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We have generated docking poses for the FKBP-GPI complex using eight docking programs, and compared
their scoring functions with scoring based on NMR chemical shift perturbations (NMRScore). Because the
chemical shift perturbation (CSP) is exquisitely sensitive on the orientation of the ligand inside the binding
pocket, NMRScore offers an accurate and straightforward approach to score different poses. All scoring
functions were inspected by their abilities to highly rank the native-like structures and separate them from
decoy poses generated for a protein-ligand complex. The overall performance of NMRScore is much better
than that of energy-based scoring functions associated with docking programs in both aspects. In summary,
we find that the combination of docking programs with NMRScore results in an approach that can robustly
determine the binding site structure for a protein-ligand complex, thereby providing a new tool facilitating
the structure-based drug discovery process.

Introduction

The determination of the three-dimensional structures of
protein-ligand complexes is the critical step in structure-based
drug design. Recent technological advances in X-ray crystal-
lography and NMR spectroscopy have dramatically increased
the number of high-resolution structures of proteins and
protein-ligand complexes. Despite their success, none of these
two techniques are high-throughput enough to keep the pace of
the discovery of new lead molecules and therapeutic targets in
the postgenomic era. Therefore, surrogate (nonexperimental)
approaches like molecular docking are used as virtual screening
tools in the structure-based drug discovery workflow employed
in the pharmaceutical and biotech industries.1-5 Interestingly,
several NMR experimental approaches6,7 have been developed
to determine the ligand binding mode without solving the 3D
structure of protein-ligand complex by combining docking
programs with NMR parameters such as saturation transfer
difference (STD)8 and nuclear Overhauser effects (NOE).

Basically, molecular docking is used to generate poses that
may or may not represent the best complimentary match
between two molecules: a receptor and a ligand. These poses
are then scored using various scoring functions to predict which
best represents the experimental or native conformation. The
first step is a conformational sampling procedure, which can
be performed using a genetic algorithm, Monte Carlo simulation,
simulated annealing, distance geometry, and other miscellaneous
methods.1 The final docked conformations are selected based
on a scoring function. In principle, the binding affinity from a
rigorous free energy simulation is an ideal scoring function.9-12

However, it is not practical to use such a time-consuming
approach in docking studies. Therefore, most current scoring
functions are derived from force fields13,14or empirical15-17 or
knowledge-based potentials.18,19Several comparative studies of
various scoring functions have been reported.20-23 Unfortunately,

the consensus is that energy-based functions are not accurate
enough at this time to discriminate the native ligand structure
from decoy sets, which often leads to multiple solutions for the
best protein-ligand complex structure.2,3,5,23,24

Recently, we have developed an accurate and fast approach
to calculate NMR chemical shifts for biological systems using
the divide-and-conquer method.25 To our knowledge, this
represents the first time that we calculate binding-induced
chemical shift perturbations for an entire protein-ligand
complex at the quantum mechanical level. We have previously
applied this approach to the study the FKBP-GPI complex.26

The GPI molecule (see Figure 1) is an effective inhibitor for
the peptidyl-prolyl cis-trans isomerase (PPIase) activity of
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Figure 1. The chemical structure of GPI.

Figure 2. The binding site structure taken from NMR_6 (1F40).
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FKBP. Ten NMR structures of this complex have been
determined by Sich et al. (PDB code: 1F40).27 An excellent
agreement between experimental and calculated proton chemical
shifts was obtained for the NMR models with Ile56-O1(ligand)
hydrogen bonds. Other models without this hydrogen bond
tended to have much larger CSP root-mean-squared deviations
(RMSD) between experiment and theory. This finding shows
that this Ile56-O1 hydrogen bond is important for molecular
recognition. Moreover, our approach was able to validate the
binding site structure for the observed protein-ligand complex.
Another application of our approach was to select the correct
ligand structure from a set of decoy poses. Since CSP can be
readily measured by NMR experiment with high precision, the
RMSD between experimental and calculated CSP offers a
straightforward manner to score different poses for a given
protein-ligand complex. The major goal of this paper is to
demonstrate that our approach, NMRScore, is able to improve
the overall performance of scoring ligand poses in a protein
binding pocket when compared to conventional scoring func-
tions. To achieve this goal, we have docked the GPI molecule
into the FKBP binding pocket using eight popular docking
programs including AutoDock,13 Dock,14 eHiTs,28 FlexX,29

Fred,30 Glide,31,32LibDock,33,34and MOE.35 Then we compared
the performance of the scoring function associated with each
docking program with that of NMRScore. We would like to
point out that the CSP information is not utilized during the
process of NMR structure determination. Therefore, NMRScore
is a fair scoring function for both NMR structures and docking
poses.

Methods

Docking Procedure.A computational workflow specific to each
of the docking/scoring functions was performed, leading to eight
different populations of poses (one for each function). Before
performing any scoring simulations, sets of ligand (GPI, see Figure
1) and enzyme (FKBP) input files were produced for each of the
10 NMR models in the NMR ensemble within the FKBP/GPI PDB
file (1F40). Each of these input files included the fully protonated
structures and experimentally determined coordinates originally
found within 1F40. Atomic charges were assigned to each ligand
atom using the Antechamber/DivCon application from the AMBER
suite of programs,36 and these charges were used for all score
functions. Standard Cornell et al.ff9437 atomic charges were
assigned for FKBP. No preminimization or other cleanup was
performed; hence, experimental coordinates were used throughout.
Beginning with these standard input files, the eight docking/scoring
studies summarized in Table 1 were performed (using both flexible
ligand and rigid ligand docking) leading to eight different pose
populations encompassing hundreds or thousands of different poses
per function. In order to limit redundant poses within each
population, the poses were clustered across the 10 NMR models
using a 1.0 Å RMSD cutoff.

Scoring Procedure.Once the RMSD clustering was complete,
the top 30 ranked poses for each program were used to calculate
NMR chemical shift perturbations as implemented in the DivCon
program.38 We used the following specification to identify each
docking pose: docking program_number. The number is the ranking
according to the corresponding scoring function in the docking
program. For example, AutoDock_2 means the second ranked (i.e.,
second best predicted pose) structure generated by AutoDock. We
computed the CSP RMSD from the experimental values to generate
the value for NMRScore. The lower CSP RMSD, the better the
NMRScore. To calculate the structural RMSD, we referenced every
pose to NMR_6 (the sixth structural model from the 10 structure
NMR ensemble) because it had the lowest CSP RMSD and we
think it is the best NMR model for the “true” native structure (see
Figure 2). For each docking program, we generated two figures
summarizing the results: one is the program score versus structural
RMSD, the other one is the NMRScore versus structural RMSD.
We also include the NMRScore for the remaining experimental
NMR structures of the FKBP-GPI complex from the NMR
ensemble for reference in the latter figure. In addition, we showed
the Spearman correlation coefficientF (see eq 1) for each scoring
function and NMRScore against structural RMSD. A perfect scoring
function only needs to provide the correct rankings of candidate
molecules, no matter what the values of this scoring function. The
Spearman correlation coefficient is a nonparametric measure of
correlation and a proper quantitative measurement for this purpose
since we observed very few “ties” in the scoring functions we tested.

Figure 3. (A) AutoDock ScoreVersusthe structural RMSD (Å). (B) NMRScoreVersusthe structural RMSD using the AutoDock derived poses.
The red squares represent the experimental NMR ensemble structures of the GPI-FKBP complex.

Figure 4. The binding site structure taken from Autodock_19, which
shows the pyridine moiety of GPI is predicted to dock into a shallow
groove formed by Phe46, Phe48, and Glu54.
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where di is the ranking difference of theith pose between the
structural RMSD and the scoring function (or NMRScore).N is
number of pairs of values. In theory,F falls between-1 and+1,
where+1 corresponds to a perfect correlation;-1 corresponds to
a perfect inverse correlation, and zero corresponds to no correlation.

Results and Discussion

AutoDock. The 30 poses generated by AutoDock were
clustered into two groups: one with a structural RMSD from

1.5 Å to 2.6 Å, the other from 3.9 Å to 4.7 Å (see Figure 3A).
The pyridine moiety (see Figure 1) from the second RMSD
grouping docks into a shallow groove formed by Phe46, Phe48,
and Glu54, instead of the pocket formed by Ile56, Tyr82, and
His87 as seen in the native structure (see Figure 4). The other
regions of GPI are bound in a manner similar to that seen in
the native structure. The AutoDock scoring function is based
on a force field, which is typically not specifically developed
for describing protein-ligand interactions. Therefore, it is not
surprising that the Spearman correlation coefficient is negative
for the AutoDock Score. NMRScore demonstrates that all of
the “best” Autodock poses (see Figure 3B) are not good models
for the orientation of GPI in the FKBP binding pocket. We
expect NMRScore to have an RMSD of below 1 ppm in order
to indicate a good match with experiment. This is based on past
experience with NMRScore on this system (see NMR structures
in Figure 3A). None of the Autodock structures reach this
threshold, and as a result we would predict that Autodock has
not placed the ligand in a native-like configuration, which is,
indeed, the case.

Dock. Two different settings of the Dock program were
employed in order to utilize both flexible (20 atoms of GPI
were flexible) and rigid ligand docking (for the results, see
Figure 5). The range of structural RMSD for the docked poses
was from 3 Å to 11 Å.Since there are several scoring functions
available in the Dock program, we used the grid-based scoring
function as a primary scoring function. According to this force
field-based scoring function, the rigid docking poses have less
favorable (more positive) Dock scores than the flexible docking
poses (see Figure 5A). Dock_1 and Dock_2 placed the pyridine
moiety into the major binding pocket (see Figure 6), resulting
in a large structural RMSD (around 9.3 Å) and NMRScore
(about 1.35 ppm).

Dock_3 and Dock_6 have the best NMRScore (CSP RMSD
) 0.5 ppm) but have a different structure from the native one
(structural RMSD) 6 Å). They are even better than some of
the NMR ensemble structures in terms of NMRScore (see Figure
5B). This is because the pyridine and isopentyl parts of these
structures swap their positions but the pyrrolidine moiety

Figure 5. (A) Dock ScoreVersusthe structural RMSD. The rigid docking poses have scores above-30 whereas the flexible poses have scores
below -40. (B) NMRScoreVersusthe structural RMSD using Dock derived poses. The red squares represent the experimental NMR ensemble
structures of the GPI-FKBP complex.

Table 1. Summary of Docking/Scoring Protocols

program
flexible
ligand

total
poses

cluster
RMSD, Å

final
poses notes

Autodock yes 2560 1.0 30 in house, used standard settings
Dock (1) yes 300 1.0 30 in house, used 20 atom flexibility and rigid docking
eHiTS yes 500 1.0 30 in house, used -advanced keyword
FlexX yes 250 1.0 30 in collaboration with BioSolveIT
Fred yes 3000 1.0 30 in collaboration with OpenEye
Glide no 285 1.0 30 in collaboration with J&J
LibDock yes 5000 1.0 30 in collaboration with Pharmacopeia
MOE yes 300 1.0 30 in collaboration with CCG

Figure 6. The binding site structure taken from Dock_1.

Figure 7. The binding site structure of Dock_3.
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remains at the central binding site (see Figures 1, 2, and 7).
This orientation inside the binding site gives very large chemical
shift perturbations for the protons in the five-membered ring
because of the ring current effect, which is the major source of
CSP for the GPI molecule upon binding with FKBP. Several
other structures generated by the Dock program share similar
features (see the cluster highlighted by a red oval in Figure 5B),

and it suggests that Dock has found an alternate solution to the
structure of this complex. The pyridine ring in these poses could
give large CSP for protons on Phe36 and Ile90, while that in
the native structure would likely not. Therefore, inclusion of
CSP from the side chains of the FKBP protein in NMRScore
may differentiate these poses from the native structure. This
problem can also be easily avoided by measuring NMR

Figure 8. (A) EHITS Score vs the structural RMSD. (B) NMRScoreVersusthe structural RMSD using EHITS derived poses. The red squares
represent the experimental NMR ensemble structures of the GPI-FKBP complex.

Figure 9. (A) FlexX Score vs the structural RMSD. (B) NMRScoreVersusthe structural RMSD using FlexX poses. The red squares represent the
experimental NMR ensemble structures of the GPI-FKBP complex.

Figure 10. (A) Fred Score vs the structural RMSD. (B) NMRScoreVersusthe structural RMSD using Fred poses. The red squares represent the
experimental NMR ensemble structures of the GPI-FKBP complex.

Figure 11. (A) Glide Score vs the structural RMSD. (B) NMRScoreVersusthe structural RMSD using Glide poses. The red squares represent the
experimental NMR ensemble structures of the GPI-FKBP complex.
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experimental NOEs between the ligand and the protein. Future
studies will examine this interesting observation in more detail,
but suffice it to say that NMRScore, in its current incarnation,
would have provided two solutions for the FKBP-GPI complex.
Nevertheless, the overall performance of NMRScore (F ) 0.64)
is much better than that of Dock Score (F ) -0.25).

EHITS. The top 30 ranked poses by EHITS are spanned by
a wide spectrum of structural RMSD from 1.6 Å to 7 Å (see
Figure 8). The highest ranked pose (RMSD 2.2 Å) is close to
the native pose of the FKBP-GPI complex when compared to
other docked poses. However, many lower ranked poses also
have relatively small structural RMSD (see Figure 8A).
Therefore, it is difficult for EHITS scoring function to rank these
native-like structures. Figure 8B plots NMRScore with respect
to the structural RMSD for the top 30 poses. EHITS_21 has

the lowest NMRScore at 0.78 ppm and the lowest structural
RMSD at 1.6 Å. The poses with larger structural RMSD tend
to have the worst (larger values) NMRScore. One prominent
exception is EHITS_18 that has a relatively low NMRScore
(0.82 ppm) with a very different structure from the native one
(RMSD 6.2 Å). Similar to Dock_3 and Dock_6 mentioned
above (see Figures 6 and 7), the isopentyl and pyridine moieties
of EHITS_18 switch their positions relative to the native
structure, resulting in a large structural RMSD, whereas the
pyrrolidine ring of EHITS_18 is kept inside the hydrophobic
pocket formed by the side chains of Tyr26, Phe46, Trp59, and
Phe99. Therefore, EHITS_18 has a relatively low NMRScore
compared to other poses, but its value is still far from the value
of the native structure (see Figure 8). Despite the presence of
this alternative conformation, NMRScore (F ) 0.55) is much
more correlated with structural RMSD than the EHITS scoring
function (F ) 0.05).

FlexX. The poses generated by FlexX are clustered in a small
RMSD range from 1.5 Å to 2.2 Å, which is close to the native
structure (see Figure 9). Their CSP RMSDs range from 1.3 to
2.3 ppm. FlexX_16 has the best NMRScore with a close-to-
native structure (RMSD) 1.6 Å). FlexX_9 has the largest CSP
RMSD of 2.3 ppm with a similar structure (RMSD) 1.7 Å).
Most of their deviations come from H51 and H52 in the
pyrrolidine ring because these two protons in FlexX_9 are in
very close proximity to aromatic rings in FKBP, leading to
unreasonably large chemical shift perturbations (-3.3 and-10.6
ppm, respectively). Actually all poses from FlexX suffer from
this problem, hinting that the nonbonded parameters are too
forgiving with respect to close contacts. This results show that
NMRScore is exquisitely sensitive to subtle differences of the
ligand pose within the binding pocket, which allows us to detect
unrealistic close contacts from a set of docking poses.

Fred. We selected the chemgauss2 scoring function imple-
mented in the Fred docking program to score all Fred docking
poses. In addition, we were able to score ten NMR structures
using this scoring function (see Figure 10A). The chemgauss2
scoring function ranks NMR_6 as the best scoring structure,
but mingles the rest of NMR structures with the docking poses.
All top-ranked poses docked by Fred are clustered into the
RMSD range from 1 Å to 3 Å except Fred_26 (structural
RMSD: 4.1 Å). As mentioned before for AutoDock_19,
Fred_26 docks the pyridine ring into a shallow groove formed
by Phe46, Phe48, and Glu54, while keeping other structural
features close to the NMR structure. Consequently, the CSP
RMSD of Fred_26 is quite low (0.42 ppm). Many other docked
poses with low structural RMSD also have better NMRScores,
some even better than several of the NMR structures (see Figure
10B). NMRScore also top-ranks the pose with the lowest
structural RMSD. We conclude that while Fred is able to

Figure 12. (A) LibDock Score vs the structural RMSD. (B) NMRScoreVersusthe structural RMSD using LibDock poses. The red squares represent
the experimental NMR ensemble structures of the GPI-FKBP complex.

Figure 13. The binding site structure of LibDock_28 (green) and
NMR_6 (cyan).

Figure 14. The binding site structure of MOE_1.
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generate many correct native-like structures, its chemgauss2
scoring function ranks them inconsistently with structural RMSD
(F ) 0.08). However, NMRScore gives an improved ranking
according to structural RMSD (F ) 0.58). Overall, FRED
generated many relevant poses, but its score function produced
more of a scatter, which is partially alleviated by applying
NMRScore.

Glide. The structures docked by Glide cover a structural
RMSD range from 0.6 Å to 7.4 Å, which were clustered into
four groups (see Figure 11). The first group includes the poses
with RMSD values from 0.6 Å to 2 Å, which have native-like
structures. They are generally highly ranked according to the
Glide scoring function (more negative) and NMRScore (lower
CSP RMSD). The poses in the second group dock the isopentyl
group deep into the major binding pocket, which gives a
relatively large RMSD around 4-5 Å. Some of these structures
are ranked high by Glide Score (see Figure 11A), but usually
have a poor NMRScores (see Figure 11B). For example, Glide_5
belongs to this group and has an NMRScore of 1.9 ppm. The
structures in the third group are just like Dock_3, Dock_6, and
EHITS_18 described above: the isopentyl and pyridine parts
switch their positions while the pyrrolidine ring is locked into
the central binding site (RMSD∼6-7). Therefore, these
structures have a good NMRScore even though their RMSD
from the native pose is quite large. There are three poses,
Glide_18, Glide_19, and Glide_22, in the last group, which have
a structural RMSD over 7 Å because the pyridine ring of these
structures lies in the major binding pocket. All of these structures
are ranked poorly based upon both Glide Score and NMRScore.

LibDock. The structural RMSDs for LibDock poses range
from 1.6 Å to 4.4 Å. LibDock_1 has an NMRScore of 1.19
ppm with 2 Å RMSD from the native structure. However, there
are many poses with similar structures that were poorly ranked
(more positive) according to the LibDock scoring function (see
Figure 12A). Therefore, the LibDock scoring function cannot
tell which native-like pose is the most favorable (F ) 0.36).
Interestingly, LibDock_28 (see Figure 13) has the best NMR-
Score (CSP RMSD) 0.68 ppm) with 2.5 Å RMSD from the
native structure (see Figure 12B). The isopentyl part of this pose
is quite different from the native structure, but the pyrrolidine
ring retains its position. Therefore, most of its CSP RMSD
originates from the positioning of the isopentyl protons. Lib-
Dock_29 shares the same feature. The Spearman correlation
coefficient for NMRScore is 0.62, which indicates it significantly
correlated with structural RMSD.

MOE. The top 30 ranked poses span a structural RMSD from
2 Å to 9 Å. The isopentyl moiety in the highest ranked pose
(MOE_1) docks deep into the central hydrophobic binding
pocket (see Figure 14), resulting in a very large structural RMSD
(7.0 Å) with one of the worst NMRScores (CSP RMSD) 2.2
ppm). As shown in Figure 15A, the MOE scoring function

cannot differentiate the close-to-native structures from the far-
from-native structures (F ) 0.1). However, based on NMRScore,
the closer to the native structure the docking pose (the smaller
structural RMSD), the lower CSP RMSD (see Figure 15B).
Therefore, NMRScore is better than MOE in scoring and
identifying native-like docking poses (F ) 0.82).

Conclusions

We have compared NMRScore with several “traditional”
scoring functions associated with popular docking programs
using the FKBP-GPI complex as our model system. Generally,
these docking programs were able to find the correct binding
site, but overall they were unable to differentiate native-like
poses from non-native for this system. By incorporating some
easily measured NMR experimental data (such as CSP),
NMRScore can clearly differentiate native from non-native
poses. FlexX generates native-like structures but puts the ligand
very close to the protein, as detected by NMRScore. Fred had
the best docking structures, which have the lowest CSP RMSD
and structural RMSD from the NMR structure. NMRScore, in
conjunction with a docking program, can be used to determine
the ligand orientation inside a protein binding pocket. For some
poses (Dock_3, Dock_6, EHITS_18), the isopentyl group and
pyridine ring switch their positions, leading to false positives
for NMRScore. This “ligand orientation problem” can be
corrected through the inclusion of CSPs from protein residues
or experimental NOE information, which is the subject of future
studies. The utilization of the STD NMR experiment8 also can
eliminate this problem. This study represents only one protein-
ligand complex system with proton CSPs, but work is underway
to extend this procedure to other complexes with other nuclei
such as13C, 15N, 19F, in order to further validate NMRScore.
Nonetheless, we conclude that NMRScore, which incorporates
experimental NMR CSP information, is better than other energy-
based scoring functions in terms of scoring native-like protein-
ligand complexes.
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